
Simple Variables
• In Perl, we refer to simple variables (i.e., something that 
holds one of something) as a scalar

• Scalars are easy to spot, they start with the "$" character

$total = 0;

• Aside: Just to be exact, note that the semicolon in Perl is a 
statement terminator

• Assigning a value to a scalar is easy (as shown above)

• Other examples of valid assignment are:
$total = $total + 1;     # increment the scalar total.

$subtotal = $total = 3;  # set the scalars subtotal & total to 3.

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



More on Scalars
• Note: there's no need to declare a scalar!!

• Scalars are case-sensitive, so $total, $Total, and 
$TOTAL all refer to different scalars, so be very careful ...

• If you use $Total and you really mean $total, Perl will 
not complain (and your script will not work at all correctly)

• Some help is on hand, however, and is available via the -w 
switch:

#!/usr/bin/perl -w

while (<>) 
{ 

do something ... 
}

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



More Scalar Examples
• A scalar can hold either a string or a number:

$hello = "Hello World!";
$prime = 13;

• The following is legal, but very dangerous: 

$while = "Wait a while ... ";

• Imagine code like this (Yuk!):

while ($while < 6) { ... }

• Even though the "$" in front of while allows Perl to treat it 
as a scalar (as opposed to a while loop), for us humans, such 
a practice can only lead to bad things happening ...

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



Scalars and Numbers
• It looks strange, but it is quite okay to do this in Perl:

$myVar = "Hello";
print $myVar, "\n";
$myVar = 42;
print $myVar, "\n";

• Remember: Perl has no real notion of type, so a scalar can 
contain any value, string, or number at any time

• By default, Perl treats all number as double precision 
floating point

• By placing "use integer;" near the top of your script, 
you can indicate that integer arithmetic should be used as 
the default (which can sometimes improve execution speed)

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



More Numbers
• Hex numbers can be written in the familiar C/C++/Java 
notation:

$myHexNumber = 0xffb2;

• Octal numbers can be written this way:

$my_octal_number = 0377;

• Long numbers can be made more readable by the use of the 
underscore, so:

1993245890

• can also be written as:

1_993_245_890

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



Perl Operators (1 of 3)
++ increment

-- decrement

** exponential

~ complement

! logical negation

* multiplication

/ division

% remainder

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



Perl Operators (2 of 3)
+ addition

- subtraction

<< shift left

>> shift right

< less than

> greater than

<= less than or equal to

>= greater than or equal to

== equal to 

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



Perl Operators (3 of 3)
!= not equal to

<=> comparison

& bitwise AND
| bitwise OR
^ bitwise XOR

&& logical AND 
|| logical OR

= assignment

not logical negation
and logical AND
or logical OR

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



Perl's Built-in Arithmetic Functions
atan ($x, $y)
abs ($x)

cos ($x)
exp ($x)

int ($x)
log ($x)

rand ($x)
rand

sin ($x)
sqrt ($x)

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



Perl's Boolean Type
• There isn't one!

• A numerical value is considered FALSE if it evaluates to 
zero

• A string value is FALSE if it contains the empty string, or if 
it contains the single character 0 (but not 00+)

• Note that (like C/C++/Java) testing for equality is performed 
by the == operator

• The single = operator is used for assignment

• To avoid confusion, think of = as meaning "becomes equal 
to"

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



Using Operators
$this <=> $that

• will return -1, 0, or 1 depending on whether the value of 
the scalar $this is less than, equal to, or greater than the 
value of the scalar $that

• We refer to the && and || operators as lazy

• The second part of the operator expression is only evaluated 
if it needs to be (this is sometimes also referred to as "short 
circuiting")

• As these two operators return as their value the last operand 
they evaluated, this behaviour (side-effect) can sometimes 
be very important

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



Watch Out! Precedence About!
• The not, and, and or operators behave like the !, &&, and 
|| operators except that their precedence is as low as it can 
go:

open DATAFILE, 'data.txt' or die "Could not open data file\n";

• will open the file data.txt, if it exists, and assign it to the 
filehandle DATAFILE - or - the program will die ...

• You may have been tempted to do the following:
open DATAFILE, 'data.txt' || die "Could not open data file\n";

• which, due to the precedence rules would be interpreted as:
open DATAFILE, ('data.txt' || die "Could not open data file\n");

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



More Assignment Stuff
• Note: an assignment is an expression, and returns as its 
value the left-hand-side of the statement

• Perl supports the composite operators familiar to 
C/C++/Java programmers:

$total += 2;  # add 2 to $total.
$times *= 3; # multiply $times by 3.

• Interestingly, a substitution operation is also an expression - 
its result is the number of substitutions performed:

$howmany = s/teh/the/g;

• will put the number of times 'teh' was replaced with 'the' 
into a scalar called $howmany

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



Default Behaviours
• Scalars that are used in an arithmetic context are guaranteed 
to be initialized to zero

• To catch usage of uninitialized variables (scalars) in your 
code, use the -w option, i.e, #!/usr/bin/perl -w

• Before any variable is used, it has an undefined value

• You can test for this using the Perl function defined:

print $howmany if defined( $howmany );

• will only print the value of $howmany if it has been defined 
beforehand

• You can force a variable to be undefined by using the 
undef function

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



Strings in Perl
• Consider the following:

print "You changed teh to the $howmany times\n";

• This (above) is an example of an interpolated string, which 
is usually enclosed in double quotes (")

print 'You changed teh to the $howmany times\n';

• This (above) is an example of a literal string, which is 
usually enclosed in single quotes (')

• The difference between the two is in how Perl treats them

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



Literal Strings
• These are strings that are treated as is, where almost every 
character stands for itself, so:

print 'You changed teh to the $howmany times\n";

• will print out the string:

You changed teh to the $howmany times\n

• i.e., all the characters, including the ones that have special 
meaning in Perl, are treated literally, including the new-
line sequence \n

• To include a new-line, put it into the string as follows:

print 'Here is a sentence that
has a new-line in it at the end of each line

';

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



Dealing with '
• What if we want to include a ' in our literal string?

How's it going?

• Perl provides a method for dealing with this:

print q[How's it going?];

• The q introduces a single-quoting character of your choice 
which is used to delimit the string (this is the same idea as 
the matching m delimiter used with patterns)

print q!How's it going?!;

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



Interpolated Strings
• Special characters are interpreted then variables are replaced 
with their values prior to using the string

• So, if $howmany has a value of 42, then:

print STDOUT "You changed teh to the $howmany times\n";

• will print:

You changed teh to the 42 times

• including the actual new-line character

• This process is referred to as interpolation

• Note: in the previous example, Perl (very kindly) converted 
the number 42 into the string "42"

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



Dealing with "
• Just like with literal strings, we can use a Perl method for 
dealing with " within our interpolated strings:

print qq[His real name is "Zorro", I swear!\n];

• will provide the desired effect, and can be referred to as 
double-quoting

• Like with q, qq can take any delimiting character of our 
choice:

print qq|His real name is "Zorro", I swear!\n|;

• will also work for us (because, in Perl, There's More Than 
One Way To Do It!)

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



Perl Gotcha
• Let's say you want to print out the following string:

Dublin is about 100km away

• and that the value 100 is in a scalar called $distance

• We could try this:

print "Dublin is about $distancekm away\n";

• but, Perl would print;

Dublin is about away

• due to the fact that $distancekm is undefined - we should 
have used:

print "Dublin is about ${distance}km away\n";

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



Working with Strings
• We can assign strings to scalars, as follows:

$greeting = q#Howya Doin'?#;

$greet_everyone = "$greeting, everyone!";

$next_input_line = <MYFILE>;

• Concatenation of strings is performed by . (i.e., dot):

$part1 = "Hello";
$part2 = "World!";

print $part1 . " " . $part2;

• will print out:

Hello World!

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



Building Strings Incrementally
• Here's our input file:

Paul is teaching us all about Perl.
Excellent!
Rather than looking at syntax, we are getting real work done!

Like ... cool, man!  Trippy ...

• Here's our script (what do we get as output?):

while (<>)
{
/(^.)/;
$initials .= $1;

}

print $initials, "\n";

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



Repetitive Strings
• We can repeat a string using the string repetition operator 
with is x:

print "Perl is Cool!\n" x 3;

• will display as output:

Perl is Cool!
Perl is Cool!
Perl is Cool!

• Warning: be careful when using . and x when working with 
strings.  For example, this:

print 3.33, "\n";

• is not the same as (and does not mean), this:

print 3 . 33, "\n";

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



Comparing Strings
•<, <=, >, >=, ==, != and <=> do arithmetic comparisons, 

and can sometimes produce unexpected results when used 
with strings

• Perl provides a set of string comparison operators that use 
lexicographical ordering:

lt - less than
le - less than or equal to
gt - greater than
ge - greater than or equal to
eq - equals
ne - does not equal
cmp - compare

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



Some (Built-In) String Functions
• Determining the length of strings:

$this = 'This is a long string';

print length( $this ), "\n";

• will print out the value 21

• Refer to the Perl on-line documentation for more details on 
length:

man perlfunc

• will display information on all of Perl's built-in functions

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



Substrings
• Working with substrings has the following general form:

substr( $string, $offset, $count )

• where $string is the string you wish to work with, 
$offset is the location within the string you wish to start 
extracting the substring from, and $count is the size of the 
substring to extract, so:

$message = 'Take me to your leader';
$who = substr( $message, 5, 2 );

print 'The value of $who is ', $who, "\n";

• will print out:

The value of $who is me

• Note: that the value of the offset starts counting at zero

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



Chopping and Chomping
chop( $text );

• will take the value of $text and remove the last character 
from the end, regardless of what that character actually is

chomp( $line );

• will remove the last character from $line if, and only if, 
the character is a new-line

• So, what happens when we run the following script?

while (<>)
{
chomp;
print;

}

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



The Infamous $_ Variable
• In the last example, the chomp wasn't told what variable to 
chomp - it magically knew to work on the current line that 
we were working with!

• In Perl, if an explicit variable is not indicated, functions (as 
well as other things) operate on the built-in default variable, 
referred to as $_:

while (<>)
{
chomp( $_ );
print( $_ );

}

• If you put 'use English;' at the top of your script, you 
can refer to this variable as $ARG 

• Most Perl programmers prefer to use $_

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



$_ and Regular Expressions
• If you've been paying attention, you will have figured out 
that regular expressions work on $_ by default:

print if /barryp/;

• But, what if we want to use our regular expressions with 
something other than $_?  

• Perl has the answer: the =~ operator (string binding):

print $line if $line =~ /barryp/;

• will print  $line if it contains the pattern 'barryp'

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



More Regular Expression Stuff 
• We can also do things like this:

$line =~ s/teh/the/g;

• to do substitutions

• And we can do this:

$line =~ tr/A-Z/a-z/;

• to do translations on variables

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



Even More Regular Expression Stuff
• We can count the number of times a replacement is 
performed:

$line = 'this is a test of the teh teh the teh relacement';
$howmany = $line =~ s/teh/the/g;
print 'We changed teh to the ' . $howmany . ' times.', "\n";

• will produce the following output:

We changed teh to the 3 times.

• It is also possible to execute an expression as part of a 
pattern:

s!(\d+)km!($1*5/8).' miles'!ge;

• will convert all kilometre strings into miles strings - note the 
qualifier 'e' at the end of the pattern, which stands for 
expression

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



A Complete Example: WYSIWYG

• Any idea what this small script does?

#!/usr/bin/perl -w

while (<>)
{
chomp;
s/^\W*//;
$phrase = $_; # $ARG if we use: 'use English;'.
$initials = '';
while ($_)
{

s/^([\w']+)\W*//;
$initials .= substr( $1, 0, 1 );

}
print "$phrase -> \U$initials\E\n";   # Uppercase.

}

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.


