
Simple Variables
• In Perl, we refer to simple variables (i.e., something that 
holds one of something) as a scalar

• Scalars are easy to spot, they start with the "$" character

$total = 0;

• Aside: Just to be exact, note that the semicolon in Perl is a 
statement terminator

• Assigning a value to a scalar is easy (as shown above)

• Other examples of valid assignment are:
$total = $total + 1;     # increment the scalar total.

$subtotal = $total = 3;  # set the scalars subtotal & total to 3.
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More on Scalars
• Note: there's no need to declare a scalar!!

• Scalars are case-sensitive, so $total, $Total, and 
$TOTAL all refer to different scalars, so be very careful ...

• If you use $Total and you really mean $total, Perl will 
not complain (and your script will not work at all correctly)

• Some help is on hand, however, and is available via the -w 
switch:

#!/usr/bin/perl -w

while (<>) 
{ 

do something ... 
}
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More Scalar Examples
• A scalar can hold either a string or a number:

$hello = "Hello World!";
$prime = 13;

• The following is legal, but very dangerous: 

$while = "Wait a while ... ";

• Imagine code like this (Yuk!):

while ($while < 6) { ... }

• Even though the "$" in front of while allows Perl to treat it 
as a scalar (as opposed to a while loop), for us humans, such 
a practice can only lead to bad things happening ...
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Scalars and Numbers
• It looks strange, but it is quite okay to do this in Perl:

$myVar = "Hello";
print $myVar, "\n";
$myVar = 42;
print $myVar, "\n";

• Remember: Perl has no real notion of type, so a scalar can 
contain any value, string, or number at any time

• By default, Perl treats all number as double precision 
floating point

• By placing "use integer;" near the top of your script, 
you can indicate that integer arithmetic should be used as 
the default (which can sometimes improve execution speed)
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More Numbers
• Hex numbers can be written in the familiar C/C++/Java 
notation:

$myHexNumber = 0xffb2;

• Octal numbers can be written this way:

$my_octal_number = 0377;

• Long numbers can be made more readable by the use of the 
underscore, so:

1993245890

• can also be written as:

1_993_245_890
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Perl Operators (1 of 3)
++ increment

-- decrement

** exponential

~ complement

! logical negation

* multiplication

/ division

% remainder
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Perl Operators (2 of 3)
+ addition

- subtraction

<< shift left

>> shift right

< less than

> greater than

<= less than or equal to

>= greater than or equal to

== equal to 
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Perl Operators (3 of 3)
!= not equal to

<=> comparison

& bitwise AND
| bitwise OR
^ bitwise XOR

&& logical AND 
|| logical OR

= assignment

not logical negation
and logical AND
or logical OR
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Perl's Built-in Arithmetic Functions
atan ($x, $y)
abs ($x)

cos ($x)
exp ($x)

int ($x)
log ($x)

rand ($x)
rand

sin ($x)
sqrt ($x)
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Perl's Boolean Type
• There isn't one!

• A numerical value is considered FALSE if it evaluates to 
zero

• A string value is FALSE if it contains the empty string, or if 
it contains the single character 0 (but not 00+)

• Note that (like C/C++/Java) testing for equality is performed 
by the == operator

• The single = operator is used for assignment

• To avoid confusion, think of = as meaning "becomes equal 
to"
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Using Operators
$this <=> $that

• will return -1, 0, or 1 depending on whether the value of 
the scalar $this is less than, equal to, or greater than the 
value of the scalar $that

• We refer to the && and || operators as lazy

• The second part of the operator expression is only evaluated 
if it needs to be (this is sometimes also referred to as "short 
circuiting")

• As these two operators return as their value the last operand 
they evaluated, this behaviour (side-effect) can sometimes 
be very important
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Watch Out! Precedence About!
• The not, and, and or operators behave like the !, &&, and 
|| operators except that their precedence is as low as it can 
go:

open DATAFILE, 'data.txt' or die "Could not open data file\n";

• will open the file data.txt, if it exists, and assign it to the 
filehandle DATAFILE - or - the program will die ...

• You may have been tempted to do the following:
open DATAFILE, 'data.txt' || die "Could not open data file\n";

• which, due to the precedence rules would be interpreted as:
open DATAFILE, ('data.txt' || die "Could not open data file\n");
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More Assignment Stuff
• Note: an assignment is an expression, and returns as its 
value the left-hand-side of the statement

• Perl supports the composite operators familiar to 
C/C++/Java programmers:

$total += 2;  # add 2 to $total.
$times *= 3; # multiply $times by 3.

• Interestingly, a substitution operation is also an expression - 
its result is the number of substitutions performed:

$howmany = s/teh/the/g;

• will put the number of times 'teh' was replaced with 'the' 
into a scalar called $howmany
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Default Behaviours
• Scalars that are used in an arithmetic context are guaranteed 
to be initialized to zero

• To catch usage of uninitialized variables (scalars) in your 
code, use the -w option, i.e, #!/usr/bin/perl -w

• Before any variable is used, it has an undefined value

• You can test for this using the Perl function defined:

print $howmany if defined( $howmany );

• will only print the value of $howmany if it has been defined 
beforehand

• You can force a variable to be undefined by using the 
undef function

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



Strings in Perl
• Consider the following:

print "You changed teh to the $howmany times\n";

• This (above) is an example of an interpolated string, which 
is usually enclosed in double quotes (")

print 'You changed teh to the $howmany times\n';

• This (above) is an example of a literal string, which is 
usually enclosed in single quotes (')

• The difference between the two is in how Perl treats them
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Literal Strings
• These are strings that are treated as is, where almost every 
character stands for itself, so:

print 'You changed teh to the $howmany times\n";

• will print out the string:

You changed teh to the $howmany times\n

• i.e., all the characters, including the ones that have special 
meaning in Perl, are treated literally, including the new-
line sequence \n

• To include a new-line, put it into the string as follows:

print 'Here is a sentence that
has a new-line in it at the end of each line

';
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Dealing with '
• What if we want to include a ' in our literal string?

How's it going?

• Perl provides a method for dealing with this:

print q[How's it going?];

• The q introduces a single-quoting character of your choice 
which is used to delimit the string (this is the same idea as 
the matching m delimiter used with patterns)

print q!How's it going?!;
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Interpolated Strings
• Special characters are interpreted then variables are replaced 
with their values prior to using the string

• So, if $howmany has a value of 42, then:

print STDOUT "You changed teh to the $howmany times\n";

• will print:

You changed teh to the 42 times

• including the actual new-line character

• This process is referred to as interpolation

• Note: in the previous example, Perl (very kindly) converted 
the number 42 into the string "42"
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Dealing with "
• Just like with literal strings, we can use a Perl method for 
dealing with " within our interpolated strings:

print qq[His real name is "Zorro", I swear!\n];

• will provide the desired effect, and can be referred to as 
double-quoting

• Like with q, qq can take any delimiting character of our 
choice:

print qq|His real name is "Zorro", I swear!\n|;

• will also work for us (because, in Perl, There's More Than 
One Way To Do It!)
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Perl Gotcha
• Let's say you want to print out the following string:

Dublin is about 100km away

• and that the value 100 is in a scalar called $distance

• We could try this:

print "Dublin is about $distancekm away\n";

• but, Perl would print;

Dublin is about away

• due to the fact that $distancekm is undefined - we should 
have used:

print "Dublin is about ${distance}km away\n";
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Working with Strings
• We can assign strings to scalars, as follows:

$greeting = q#Howya Doin'?#;

$greet_everyone = "$greeting, everyone!";

$next_input_line = <MYFILE>;

• Concatenation of strings is performed by . (i.e., dot):

$part1 = "Hello";
$part2 = "World!";

print $part1 . " " . $part2;

• will print out:

Hello World!

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



Building Strings Incrementally
• Here's our input file:

Paul is teaching us all about Perl.
Excellent!
Rather than looking at syntax, we are getting real work done!

Like ... cool, man!  Trippy ...

• Here's our script (what do we get as output?):

while (<>)
{
/(^.)/;
$initials .= $1;

}

print $initials, "\n";
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Repetitive Strings
• We can repeat a string using the string repetition operator 
with is x:

print "Perl is Cool!\n" x 3;

• will display as output:

Perl is Cool!
Perl is Cool!
Perl is Cool!

• Warning: be careful when using . and x when working with 
strings.  For example, this:

print 3.33, "\n";

• is not the same as (and does not mean), this:

print 3 . 33, "\n";
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Comparing Strings
•<, <=, >, >=, ==, != and <=> do arithmetic comparisons, 

and can sometimes produce unexpected results when used 
with strings

• Perl provides a set of string comparison operators that use 
lexicographical ordering:

lt - less than
le - less than or equal to
gt - greater than
ge - greater than or equal to
eq - equals
ne - does not equal
cmp - compare
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Some (Built-In) String Functions
• Determining the length of strings:

$this = 'This is a long string';

print length( $this ), "\n";

• will print out the value 21

• Refer to the Perl on-line documentation for more details on 
length:

man perlfunc

• will display information on all of Perl's built-in functions
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Substrings
• Working with substrings has the following general form:

substr( $string, $offset, $count )

• where $string is the string you wish to work with, 
$offset is the location within the string you wish to start 
extracting the substring from, and $count is the size of the 
substring to extract, so:

$message = 'Take me to your leader';
$who = substr( $message, 5, 2 );

print 'The value of $who is ', $who, "\n";

• will print out:

The value of $who is me

• Note: that the value of the offset starts counting at zero
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Chopping and Chomping
chop( $text );

• will take the value of $text and remove the last character 
from the end, regardless of what that character actually is

chomp( $line );

• will remove the last character from $line if, and only if, 
the character is a new-line

• So, what happens when we run the following script?

while (<>)
{
chomp;
print;

}
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The Infamous $_ Variable
• In the last example, the chomp wasn't told what variable to 
chomp - it magically knew to work on the current line that 
we were working with!

• In Perl, if an explicit variable is not indicated, functions (as 
well as other things) operate on the built-in default variable, 
referred to as $_:

while (<>)
{
chomp( $_ );
print( $_ );

}

• If you put 'use English;' at the top of your script, you 
can refer to this variable as $ARG 

• Most Perl programmers prefer to use $_
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$_ and Regular Expressions
• If you've been paying attention, you will have figured out 
that regular expressions work on $_ by default:

print if /barryp/;

• But, what if we want to use our regular expressions with 
something other than $_?  

• Perl has the answer: the =~ operator (string binding):

print $line if $line =~ /barryp/;

• will print  $line if it contains the pattern 'barryp'
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More Regular Expression Stuff 
• We can also do things like this:

$line =~ s/teh/the/g;

• to do substitutions

• And we can do this:

$line =~ tr/A-Z/a-z/;

• to do translations on variables
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Even More Regular Expression Stuff
• We can count the number of times a replacement is 
performed:

$line = 'this is a test of the teh teh the teh relacement';
$howmany = $line =~ s/teh/the/g;
print 'We changed teh to the ' . $howmany . ' times.', "\n";

• will produce the following output:

We changed teh to the 3 times.

• It is also possible to execute an expression as part of a 
pattern:

s!(\d+)km!($1*5/8).' miles'!ge;

• will convert all kilometre strings into miles strings - note the 
qualifier 'e' at the end of the pattern, which stands for 
expression
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A Complete Example: WYSIWYG

• Any idea what this small script does?

#!/usr/bin/perl -w

while (<>)
{
chomp;
s/^\W*//;
$phrase = $_; # $ARG if we use: 'use English;'.
$initials = '';
while ($_)
{

s/^([\w']+)\W*//;
$initials .= substr( $1, 0, 1 );

}
print "$phrase -> \U$initials\E\n";   # Uppercase.

}
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