
24 Chapter 1

repeat yourself

1\MZI\ QVO�7^MZ�I�;MY]MVKM�WN�7JRMK\[
We said earlier that we were going to employ Python’s for loop here. The
for loop is perfect for controlling looping when you know ahead of time how
many iterations you need. (When you don’t know, we recommend the while
loop, but we’ll save discussing the details of this alternate looping construct
until we actually need it). At this stage, all we need is for, so let’s see it in
action at the >>> prompt.

We present three typical uses of for. Let’s see which one best fits our needs.

Use “for” when
looping a known
number of times.

Usage example 1. This for loop, below, takes a list of numbers and
iterates once for each number in the list, displaying the current number on
screen. As it does so, the for loop assigns each number in turn to a loop
iteration variable, which is given the name i in this code.

As this code is more than a single line, the shell indents automatically for you
when you press Enter after the colon. To signal to the shell that you are done
entering code, press Enter twice at the end of the loop’s suite:

>>> for i in [1, 2, 3]:
 print(i)

1
2
3

As this is a suite, you need to press the Enter key TWICE after typing in this code in order to terminate the statement and see it execute.
Note the indentation and colon. Like if statements, the code associated with a
for statement needs to be indented.

Usage example 2. This for loop, below, iterates over a string, with
each character in the string being processed during each iteration. This
works because a string in Python is a sequence. A sequence is an ordered
collection of objects (and we’ll see lots of examples of sequences in this book),
and every sequence in Python can be iterated over by the interpreter.

Nowhere did you have to tell the for loop how big the string is. Python is smart
enough to work out when the string ends, and arranges to terminate (i.e., end)
the for loop on your behalf when it exhausts all the objects in the sequence.

>>> for ch in "Hi!":
 print(ch)

H
i
!

Python is smart enough to work out that this
string should be iterated over one-character
at a time (and that’s why we used “ch” as
the loop variable name here).

We used “i” as the loop iteration variable in
this example, but we could’ve called it just
about anything. Having said that, “i”, “j”,
and “k” are incredibly popular among most
programmers in this situation.

A sequence is an
ordered collection
of objects.

